Контур заземления: нормы и правила заземления

Контур заземления. ПУЭ, нормы

Наша электролаборатория производит весь комплекс электротехнических измерений, результаты которых предоставляются в надзорные органы: Энергонадзор Ростехнадзор, пожарным инспекторам. Мы прошли государственную аккредитацию и имеем аттестат установленного образца. Протоколы, выдаваемые нашей организацией, имеют силу юридического документа. Мы располагаем всеми необходимыми средствами измерения. Наши специалисты обладают необходимой квалификацией, владеют методиками электротехнических измерений. Наша лаборатория всегда готова откликнуться на предложения сотрудничества.

Проверка контура заземления на соответствие нормам. Прибор MRU-101

Часто нам задают вопросы, каковы нормы контура заземления по ПУЭ, каковы нормы контура заземления по ПТЭЭП? Действительно многие вопросы, связанные с заземлением у значительной части электриков вызывают определенные трудности. Далеко не все, сдавая ежегодный экзамен, радуются, когда среди вопросов встречается вопрос, связанный с сетью заземления. Это касается как простых электромонтеров, так и инженеров электриков.

Как правило, в повседневной работе для большей части электротехнического персонала достаточно общих представлений о назначении заземления и правил присоединения частей электроустановок к сети заземления. Для энергетиков предприятий и организаций, лиц ответственных за электрохозяйство ситуация выглядит иначе.

При посещении предприятия представителями надзорных органов, энергетику необходимо предоставить им протоколы установленного образца. Такие протоколы может составить только аккредитованная электролаборатория.

Измерение сопротивления растеканию тока контура заземления на соответствие нормам. Прибор MRU-101

Результаты измерений сопротивления заземляющих устройств должны соответствовать нормам, прописанным в ПУЭ и ПТЭЭП. Оба документа исчерпывающе регламентируют требования к заземляющим устройствам.

В дальнейшем мы будем рассматривать вопросы, связанные с электроустановками до 1000 В:

Что касается норм сопротивления контура заземления, то следует уяснить, что требования ПУЭ относятся к проектируемым, вновь возводимым и реконструируемым электроустановкам. Протоколы измерений в этом случае составляются один раз в процессе приёмосдаточных работ.

В дальнейшем, при эксплуатации электроустановок начинают действовать нормы ПТЭЭП. Эти правила определяют не только нормы сопротивления контура заземляющего устройства, но и периодичность проведения измерений. Заинтересованного читателя отсылаем к ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 и ПТЭЭП, Приложение № 3, таблица 36. В этих пунктах ПУЭ и ПТЭЭП содержится подробная информация о нормах сопротивления заземляющего контура.

Внимательное знакомство с этими документами показывает, что нормы, определяемые обоими документами, совпадают полностью. В них отражаются измерения, проводимые для контуров заземления электроустановок различного рабочего напряжения. Нормы приводятся для измерений сопротивления контура заземления с учетом присоединения естественных заземлителей и повторных заземлений так и без учёта оных. Приводим сводную таблицу:

Напряжение электроустановки (В)220- 127380-220660-380
Сопротивление без повторных заземлителей (Ом)603015
Сопротивление с повторными заземлителями (Ом)842

Под повторными заземлителями и естественными заземлителями следует понимать способ устройства заземления присоединяемых к сети электроустановок. Например, к трансформаторной подстанции присоединена осветительная сеть жилого дома. В этом случае контур заземления дома является повторным заземлением. Понятно, что измерения проводятся с присоединенными потребителями и при отключении их цепей заземления.

Надо заметить, что методика измерений довольно сложна. Например, рекомендуется проводить измерения в летнее и зимнее время года, когда удельное сопротивление грунта минимально. В другое время года к результатам измерений применяются поправочные коэффициенты. Особые требован предъявляются к местам установки измерительных электродов, например, к расположению их по отношению к подземным коммуникациям, металлическим трубопроводам.

Все нюансы проведения подобного рода измерений способны учесть только профессионально подготовленные специалисты. Для проведения измерений используется только сертифицированные измерительные приборы прошедшие государственную поверку и имеющие клеймо Госповерителя.

Если вы заинтересованы в проведении разного рода электротехнических измерений, обращайтесь к нам. Мы сотрудничаем с заказчиками из Москвы и Московской области. Наши специалисты быстро выезжают на место проведения работ и в кратчайшие сроки выполняют измерения. На все возникающие вопросы мы ответим, если вы обратитесь по контактам, размещенным на нашем сайте.

    Курбан on ноября 23, 2017 14:04

Показатели сопротивления

Показатели сопротивления очень важны, когда идет речь о сетях с разным напряжением. Это четко зафиксировано в ПУЭ.

  • В электрических установках до 1000 вольт сопротивление должно составлять не больше 4 Ом.
  • Выше 1000 вольт – сопротивление не более 0,5 Ом.
  • Если в сети используются установки и больше и меньше 1000 вольт, то за расчетный показатель берется наименьший.


Теперь, что касается проводки заземляющих проводников. Их можно проводить по бетонным и кирпичным конструкциям, как в горизонтальной плоскости, так и в вертикальной. Крепление к конструкциям производится дюбелями, между которыми можно оставлять расстояние:

Проверка сопротивления в контуре

Чтобы замерить заземление правильно, должны использоваться специальные измерительные устройства – «МС-08» или «МС-416» и пробные электроды. Методика такова:

  1. Потенциальный электрод размещают между контуром и домом на расстоянии не менее 20 м. Другой на прямой линии с первым и защитным устройством, на расстоянии не более 40 м.
  2. Подключив напряжение, измеряют сопротивление.
  3. Измерение заземления проводят несколько раз, постепенно приближая выносной электрод, но не ближе чем на 5 м.

Определение величины сопротивления выполняют по наихудшему результату из полученных.

  • Контур подключают не в ту точку электроустановки, например, непосредственно к оборудованию. Он должен подключаться к главной заземляющей шине.
  • Вместо контура используют трубу водоснабжения, отопления или другие подобные. Они могут быть заземляющими конструкциями с некоторыми оговорками и далеко не всегда.
  • Отсутствие связи нулевого проводника в заземляющем устройством, а также установка отдельных автоматических выключателей в нулевом проводнике.
  • Использование в качестве заземлителей арматуры, закопанных металлических предметов, рабочего нуля, заборов.
  • Использование контуров заземления, изготовленных из элементов малого сечения.
  • Сварной шов менее 10 см.
  • Сварные швы не обрабатывают от коррозии битумными мастиками.
  • Полоса контура, которая вышла из земли, не окрашивается. Она должна быть окрашена черной или желто-зеленой краской.
  • Недостаточная длина горизонтальных и вертикальных заземлителей.
  • Недостаточное заглубление горизонтальных элементов.
  • Устанавливают контур заземления, но не заземляют основные коммуникации, состоящие из металлических элементов: водоснабжения, отопления, газоснабжения, канализации.

Монтажные работы

После того как было определено место установки заземляющего контура, составлен чертеж, выполнены все расчеты и подготовительные работы, можно приступать к непосредственному монтажу конструкций и решать, как сделать контур заземления в данных условиях.

Вначале нужно выкопать траншею глубиной от 70 до 100 см. В вершинах треугольника с помощью кувалды забиваются уголки, обеспечивающие первоначальное сопротивление системы. Средняя глубина забивки составляет 2-3 м. Если грунт слишком твердый и электроды в него входят плохо, необходимо использовать специальный бур, высверлить отверстия и уже в них вставить заземлители.

Перед монтажом концы металлических электродов рекомендуется заострить, чтобы они легче входили в грунт. Штыри не нужно забивать полностью в землю, над ее поверхностью должно оставаться примерно 30 см для крепления. Далее горизонтальные и вертикальные части свариваются между собой, и вся конструкция подключается к металлической полосе, которая, в свою очередь, соединяется с заземляющим проводником.

Затем этот заземлительный провод соединяется с шиной, установленной в распределительном щитке. В местах соединений производится обработка антикоррозийными составами.

Расчет контура заземления

Нормативные документы

16 . ” ” ” ” ” 50 до 120 ”

Какие нормы?

1. Контур заземления для электроустановки напряжением до 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления – 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 – 35 кВ сетей с изолированной нейтралью – 250/Ip, но не более 10 Ом, где Ip – расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 2 гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 – 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 – 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Читайте также:  Как опустить кольца в колодец самому

Проводка, освещение, электрические приборы


Работы по установке заземления необходимо производить в соответствии с нормами правил устройства электроустановок. Критерии, определенные в ПУЭ, позволят выполнить все присоединения и подключение безошибочно, выдерживая все стандарты. Это гарантирует надежную работу защитной системы в доме, позволит избежать негативных последствий природного и техногенного воздействия.

Контур заземления для частного дома — замер сопротивления, размеры, монтаж, цены

При строительстве или покупке частного дома, к нему будет подведена система электроснабжения, и поэтому понадобятся заземляющие мероприятия. Предлагаем рассмотреть, как делать отдельный внешний и внутренний контур заземления, стоимость его установки и нормы ПУЭ, а также цену и где купить материалы.


Для построения такой группы принято использовать стальные уголки или арматурные металлические трубы, опоры, длиной до 3 метров. Они забиваются в землю при помощи кувалды, и при необходимости закрепляются фундаментом, но желательно не заливать их, иначе если понадобится ремонт его будет невозможно осуществить.

Замкнутые

Их преимущество в надежности, поскольку даже при повреждении перемычки между электродами сохраняется еще одна перемычка (с другой стороны). На рисунке ниже показана замкнутая схема в виде треугольника.


Общее число вертикальных электродов определяется по такой формуле:

Методы неразрушающего контроля бетона

Достаточно полно методы неразрушающего контроля классифицированы в работах Б.Г. Скрамтаева и М.Ю. Лещинского «Испытание прочности бетона» (М., 1964) и М.Г. Коревицкой «Неразрушающие методы контроля качества железобетонных конструкций» (М., 1989). В этих изданиях даны рекомендации по выбору методов и средств неразрушающего контроля в зависимости от вида контролируемого изделия и условий его эксплуатации.

Неразрушающие методы контроля прочности бетона

Рубрика: Технические науки

Статья просмотрена: 30760 раз

Методы ударного воздействия на бетон

Выдвижные испытания на бетоне при неразрушающим контроле бетона

Испытание на выдвижение измеряет с помощью специального плунжера усилие требуемое для того, чтобы вытащить из бетона стальной стержень специальной формы, увеличенный конец которого был залит в бетон на глубину 7,6 см.

Бетон одновременно проверяется на растяжение и сдвиг, но сила, необходимая для вытягивания бетона может быть связана с его прочностью на сжатие.

Таким образом, метод выдвижения может количественно измерить прочность бетона на месте, когда были сделаны соответствующие корреляции. Было обнаружено, что в широком диапазоне значений прочность на разрыв имеет коэффициент вариации, сравнимый с коэффициентом прочности при сжатии. Другими словами они почти равны.

Испытание может быть неразрушающим, однако, если приложено минимальное усилие отрыва, которое не разрушает опалубку и гарантирует, что была достигнута минимальная сила. Это информация имеет особую ценность и в случаи, когда тест не пройдет и бракуется вся партия бетона.

Неразрушающие методы определения прочности бетона

Прочность бетона при применении неразрушающих методов определяют по предварительно установленным градуировочным зависимостям между прочностью образцов на сжатие и косвенными характеристиками прочности. Различают механические и физические неразрушающие методы (рис. 2.21). Механические методы основаны на корреляционных связях между прочностью и другими механическими характеристиками бетона (твердостью, упругостью, способностью к пластическим деформациям и др.), а также усилиями, вызывающими его местные разрушения. При физических методах используют корреляционные связи прочности бетона со скоростью распространения в нем ультразвуковых волн и некоторыми другими физическими характеристиками (частотой колебаний, интенсивностью гамма-облучения при прохождении сквозь бетон и др.). Из физических методов на практике, в основном, применяется ультразвуковой метод

Согласно ГОСТ 22690-88 косвенными характеристиками прочности при применении механических неразрушающих методов могут быть:

  • – значение отскока бойка от поверхности бетона (или прижатого к ней ударника);
  • – параметр ударного импульса (энергия удара);
  • – размеры отпечатка на бетоне (диаметр, глубина и т.д.) или соотношение диаметров отпечатков на бетоне и стандартном образце при ударе или вдавливании индентора в поверхность бетона;
  • – значение напряжения, необходимого для местного разрушения бетона при отрыве приклеенного к нему металлического диска;
  • – значение усилия, необходимого для скалывания участка бетона на ребре конструкции;

– значение усилия местного разрушения бетона при вырывании из него анкерного устройства.

Рис. 2.21. Классификация методов неразрушающего контроля

Механические методы неразрушающего контроля применяют для определения всех видов нормируемой прочности, а также при приеме конструкций и их обследовании. Область применения того или иного метода зависит от предельных значений измеряемой прочности (табл. 2.13).

Испытания проводят при положительной температуре бетона. Допускается при обследовании конструкций определять прочность при отрицательной температуре, но не ниже минус 10°С при условии, что к моменту замораживания конструкция находилась не менее одной недели при положительной температуре и относительной влажности воздуха не более 75%.

Предельные значения прочности бетона при применении механических неразрушающих методов_

Предельные значения прочности бетона, МПа

Упругий отскок и пластическая деформация

Отрыв со скалыванием

При контроле отпускной или передаточной прочности бетона сборных конструкций неразрушающими методами от партии отбирают 10% конструкций, но не меньше трех. Для определения прочности бетона монолитных конструкций в промежуточном возрасте контролируют не менее одной конструкции из объема бетона, уложенного на протяжении суток (или части конструкции в случае, когда ее бетонирование выполнялось больше одних суток). На каждой

Рис. 2.22. Молоток Шмидта

сборной конструкции, отобранной для определения прочности бетона неразрушающими методами, выбирают не менее двух, а для монолитной – не менее четырех контрольных участков. Участок должен иметь площадь от 100 до 600 см 2 . Количество и расположение контрольных участков определяет проектная организация в рабочих чертежах конструкций в зависимости от геометрических размеров, назначения и технологии их изготовления, их должно быть не менее:

  • – для линейных конструкций – один участок на 4 м длины;
  • – для плоских конструкций, за исключением монолитных конструкций сплошных стен – один участок на 4 м 2 площади;
  • – для монолитных конструкций сплошных стен – один участок на 8 м 2 площади.

Принцип действия приборов по методу упругого отскока – склерометров (молотки Шмидта, рис. 2.22) заключается в том, что специальным ударником наносится удар по сферическому штампу, прижатому к бетону. Размер отскока ударника характеризует твердость бетона, в зависимости от которой с помощью градуировочной кривой рассчитывают прочность при сжатии.

Рис. 2.23. Прибор ИПС-МГ

В приборах, где реализуется метод ударного импульса (ИПС-МГ, Оникс-2,5 и др.), регистрируется энергия, которая возникает в момент удара бойка по поверхности бетона (рис. 2.23). Электронный блок, содержащийся в этих приборах, по параметрам ударного импульса, поступающим от склерометра, оценивает твердость и упруго-пластические свойства материала и устанавливает соответствующий класс бетона по прочности.

При использовании приборов, работающих по методу пластических деформаций (молоток К.П. Кашкарова, приборы ДПГ-4, ДПГ-5 и др.) (рис.2.24), измеряют диаметр отпечатка на бетонной поверхности при вдавливании индентора (штампа) под действием нагрузки. Вдавливание штампа происходит под действием удара, который осуществляется с помощью специальной пружины, свободного падения маятника и т.д. В качестве бойка обычно применяют сферические наконечники определенного диаметра, которые образуют на поверхности бетона отпечатки сферической формы. Диаметр отпечатка должен составлять от 20 до 70% диаметра индентора. Наиболее точные результаты по этому методу достигаются, если при ударе получают два отпечатка – на бетоне (d6) и на эталоне (d3), в качестве которого применяют стальной стержень с известным показателем твердости. Прочность бетона определяют по градуировочной кривой в зависимости от отношения d6 / d3 (рис. 2.24).

При использовании методов отрыва, отрыва со скалыванием и скалывания ребра (методы местных разрушений) применяют гидравлические прессы – насосы (ГПНВ-5, ГПНС-4 и др.) (рис. 2.25), способные с помощью поршня, перемещаемого под давлением в рабочем цилиндре, создавать необходимые усилия.

При применении метода отрыва на предварительно зачищенную поверхность бетона эпоксидным клеем приклеивают стальной диск, имеющий с одной стороны стержень с винтовой нарезкой. При отрыве вместе с диском отрывается часть бетона. Для определения прочности бетона на сжатие измеряют величину условного напряжения в бетоне при отрыве:

де F – вырывное усилие; Рв – площадь проекции поверхности отрыва бетона на площадь диска.

Рис. 2.24. Молоток конструкции К.П. Кашкарова: а – общий вид; б -градуировочный график; 1 – корпус; 2 – стакан; 3 – головка; 4 – пружина; 5 – шарик; 6 – стержень; d6 – диаметр отпечатка на бетоне; с!э – диаметр отпечатка на эталоне

Результаты испытаний не учитывают, если при отрыве бетона была обнажена арматура или площадь проекции поверхности отрыва составила менее 80% площади диска.

Метод отрыва со скалыванием основан на зависимости между прочностью бетона на сжатие и усилием, которое необходимо для вырывания из бетона специального анкерного устройства. Применяют три типа анкеров (рис. 2.25): тип I – устанавливают на конструкции при бетонировании, типы II и III – устанавливают в предварительно подготовленные шпуры на конструкции.

Во время испытаний рабочий поршень гидравлических пресс- насосов под действием определенного давления в цилиндре передает на анкерное устройство необходимое вырывное усилие.

При применении анкерных устройств, прочность бетона R6, МПа можно вычислять с помощью градуировочной зависимости по формуле:

где mi – коэффициент, учитывающий максимальный размер крупного заполнителя в зоне вырыва и принимаемый равным 1 при крупности менее 50 мм и 1,1 при крупности 50 мм и более; m2 коэффициент пропорциональности для перехода от усилия вырыва, кН, к прочности бетона, МПа; Р – усилие вырыва анкерного устройства, кН.

При испытании тяжелого бетона прочностью 10 МПа и более и керамзитобетона прочностью от 5 МПа до 40 МПа значения коэффициента пропорциональности ш2 принимают по ГОСТ 22690-88. Он зависит от условий твердения бетона, типа анкерного устройства, глубины его заложения, вида бетона.

Читайте также:  Как можно эффективно убрать царапины с холодильника

Метод скалывания ребра базируется на измерении усилия скалывания бетона в ребре конструкции. Испытательное оборудование для реализации этого метода включает прибор типа ГПНВ-5 или ГПНС-4 с силоизмерителем и дополнительное устройство УРС (рис. 2.26). После закрепления на конструкции этого устройства на него передают усилие до момента скалывания части ребра.

Прочность бетона по данному методу определяется по формуле:

где m – коэффициент, учитывающий максимальный размер крупного заполнителя и принимаемый равным 1 при крупности заполнителя менее 20 мм; 1,05 при крупности заполнителя от 20 до 30 мм и 1,1 при крупности заполнителя от 30 до 40 мм; Р – усилие скалывания, кН.

Рис. 2.25. Типы анкерных устройств:

1 – рабочий стержень; 2 – рабочий стержень с разжимным конусом; 3 – рабочий стержень с полным разжимным конусом; 4 – опорный стержень; 5 – сегментные рифленые щеки

Рис. 2.26 Прибор для испытания прочности бетона методом скалывания ребра: 1 – конструкция; 2 – скалываемый бетон; 3 – приспособление УРС; 4 – прибор ГПНС-4

При применении методов ударного импульса и пластической деформации расстояние от мест проведения испытания до арматуры должно быть не менее 50 мм. Приборы располагают так, чтобы усилия прикладывались перпендикулярно испытываемой поверхности. При испытании методами отрыва, отрыва со скалыванием и скалыванием ребра контролируемые участки конструкции должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.

Число испытаний на контролируемом участке и другие условия, которые нормируются в зависимости от метода неразрушающего контроля, приведены в табл. 2.14.

На точность измерения прочности бетона неразрушающими методами могут влиять такие факторы как состав цемента, тип заполнителя, условия твердения, возраст бетона, влажность и температура поверхности, карбонизация поверхностного слоя бетона и др.

Наиболее точными из методов неразрушающего контроля прочности бетона являются методы местных разрушений. Недостатками этих методов являются повышенная трудоемкость, невозможность применения в густоармированных конструкциях, частичные повреждения поверхности конструкций. Приборы, основанные на методах местных разрушений, применяются преимущественно в монолитном домостроении и при обследовании конструкций зданий и сооружений.

Условия испытаний прочности бетона

Число испытаний на участке

Расстояние между контрольными точками, мм

Расстояние от края конструкции до контрольной точки, мм

Рис. 2.21. Классификация методов неразрушающего контроля

Современные методы и средства неразрушающего контроля качества бетонных и железобетонных конструкций

Качество бетонных и железобетонных изделий и конструкций в значительной степени зависит от эффективности и действенности контроля прочности и однородности бетона, защитного слоя бетона и расположения арматуры, напряжений в арматуре предварительно напряженных железобетонных конструкций.

Определение прочности бетона может производиться стандартными методами (ГОСТ 10180 Бетоны. Методы определения прочности по контрольным образцам) путем изготовления и испытания образцов, однако достоверность контроля его прочности и однородности по стандартным образцам является недостаточной в силу ряда причин: объем испытания стандартных образцов не превышает 0,01 % уложенного в конструкцию бетона, условия виброформования и режимы твердения образцов и конструкций различны, стандартными методами невозможно определить однородность бетона в изделии и прочность отдельных его участков. При обследовании зданий и сооружений стандартные методы испытания бетона вообще неприменимы. Перечисленные недостатки стандартных методов испытания прочности бетона обусловили развитие неразрушающих методов контроля и методов, связанных с испытаниями бетона в нестандартных образцах, извлекаемых из конструкции.

Примером эффективного применения приборов неразрушающего контроля может служить контроль прочности и однородности бетона в изделиях кассетного производства ЗЖБИ Главюжуралстроя при выявлении причины вытягивания монтажных петель в процессе извлечения внутренних стеновых панелей из кассетных установок и их транспортировки. По данным лаборатории, прочность бетона контрольных кубов на момент распалубки соответствовала нормируемой отпускной прочности 14,8 МПа. Расследование аварийной ситуации показало, что причиной является пониженная прочность бетона в зоне анкеровки монтажных петель (конструкция петель и длина зоны анкеровки соответствовали проекту). Проверку прочности бетона отдельных участков производили в верхней, нижней и средней частях каждого изделия приборами Бетон-12 (при поверхностном прозвучивании) и ИПС-МГ4 (градуировочная зависимость прибора уточнялась по контрольным кубам). В результате было установлено, что средняя прочность бетона участков по высоте изделий составила 9,2 МПа (верх), 13,7 МПа (середина) и 16,4 МПа (низ), а скорость распространения УЗК составила от 3270 м/с (верх) до 3820 м/с (низ). Очевидно, что прочность бетона в изделиях кассетного производства, определяемая по контрольным образцам, существенно отличается от фактической прочности наиболее ответственных участков изделий, что может приводить к выпуску некачественной продукции и аварийным ситуациям.

Неразрушающий контроль отпускной и передаточной прочности бетона позволяет оперативно влиять на технологический процесс производства железобетонных изделий, своевременно корректировать состав, режимы виброуплотнения и термообработки бетона. Для неразрушающего контроля прочности бетона используются приборы, основанные на методах местных разрушений (отрыв со скалыванием, скалывание ребра, отрыв стальных дисков), ударного воздействия на бетон (ударный импульс, упругий отскок, пластическая деформация) и ультразвукового прозвучивания.

При обследовании монолитных конструкций и больших массивов бетона применение ударно-импульсных и ультразвуковых приборов должно сочетаться с испытаниями бетона методами отрыва со скалыванием, скалывания ребра (ГОСТ 22690 Бетоны. Определение прочности бетона методами неразрушающего контроля) или отбора образцов или кернов (ГОСТ 28570 Бетоны. Методы определения прочности по образцам, отобранным из конструкции).

При выборе методов неразрушающего контроля и приборов для проведения испытаний бетона пользователь должен знать их особенности и рекомендуемые области применения. Достаточно полно методы неразрушающего контроля классифицированы Б.Г. Скрамтаевым и М.Ю. Лещинским (Испытание прочности бетона 1964), М.Г. Коревицкой (Неразрушающие методы контроля качества железобетонных конструкций 1989), в их работах даны рекомендации по выбору методов и средств неразрушающего контроля в зависимости от вида контролируемого изделия и условий его эксплуатации. Однако современная приборная база неразрушающего контроля существенно отличается от рекомендуемой названными авторами.

С начала 90-х годов прошлого столетия активно ведется разработка и производство приборов неразрушающего контроля нового поколения с применением электроники и микропроцессорной техники, наращиваются их функциональные возможности. Особого внимания заслуживают методы отрыва со скалыванием, скалывания ребра и отрыва стальных дисков, которые часто называют методами местных разрушений. Эти методы характеризуются большей точностью по сравнению с другими методами неразрушающего контроля.

Приборы, основанные на методах местных разрушений, применяются в основном в монолитном домостроении и при обследовании конструкций зданий и сооружений. Недостатки этих методов, обусловленные повышенной трудоемкостью и необходимостью определения оси арматуры и глубины ее залегания, ограничивают их применение определением прочности бетона отдельных конструкций или их участков, а также уточнением градуировочных зависимостей ультразвуковых и ударно-импульсных приборов в соответствии с Приложением 9 (ГОСТ 22690 Бетоны. Определение прочности бетона методами неразрушающего контроля).

Основные объемы неразрушающего контроля прочности бетона выполняются, как правило, высокопроизводительными приборами после установления корреляции их косвенной характеристики (базовой зависимости) с фактической прочностью контролируемого бетона.

Применение приборов, имеющих большой объем памяти, интерфейс с ПК и функции уточнения и корректировки градуировочных характеристик, маркировки измерений типом контролируемого изделия, значительно облегчает документирование и последующую обработку результатов измерений. Наиболее сложными для контроля бетона конструкций являются случаи воздействия на него агрессивных факторов: химических (соли, кислоты, масла и др.), термических (высокие температуры, замораживание в раннем возрасте, либо переменное замораживание и оттаивание в водонасыщенном состоянии), атмосферных (карбонизация поверхностного слоя). Эти факторы воздействуют в первую очередь на поверхностные слои бетона, в связи с чем при обследовании необходимо визуально, простукиванием, либо смачиванием раствором фенолфталеина (случаи карбонизации бетона) выявить поверхностный слой с нарушенной структурой. Подготовка бетона таких конструкций для испытаний неразрушающими методами заключается в удалении поверхностного слоя на участке контроля и зачистке поверхности наждачным камнем. Прочность бетона конструкций в этих случаях необходимо определять преимущественно приборами, основанными на методах местных разрушений, либо путем отбора образцов. При использовании же ударно-импульсных и ультразвуковых приборов контролируемая поверхность должна иметь шероховатость не более Ra 25, а градуировочные характеристики приборов уточнены.

Пользователь должен знать, что базовая, либо типовая градуировочная зависимость, с которой может поставляться прибор, с достаточной степенью точности воспроизводит прочность бетона того вида (класса), на котором прибор калибровался. Изменение вида крупного заполнителя. влажности, возраста бетона и условий его твердения приводит к увеличению погрешности измерений. Для ультразвуковых приборов перечень факторов, влияющих на точность измерений, еще шире (Лещинский М.Ю. Испытание бетона 1980).

Экспериментальные исследования, проводившиеся с целью установления корреляции косвенной характеристики приборов типа ИПС, откалиброванных на бетонах с гранитным щебнем, с прочностью бетона, изготовленного на других видах крупного заполнителя (гравий, граншлак, известняк, керамзит, речной песок), показали, что погрешность определения прочности бетона может достигать 27% (керамзитобетон). Влияние возраста (до 100 сут) и условий твердения бетона не столь существенны и могут составлять 4-6% измеряемого значения прочности. Контроль влажных поверхностей (для тяжелых бетонов с влажностью более 2-3%) может приводить к занижению показаний приборов до 10-15%.

СКВ Стройприбор производит сертифицированные приборы типов ПОС-50МГ4, ПОС-ЗОМГ4«Скол» и ПОС-50МГ4«Скол», обеспечивающие испытание бетона методами отрыва со скалыванием, скалывания ребра и отрыва стальных дисков, а также приборы типов ИПС-МГ4.01, ИПС-МГ4.03, реализующие метод ударного импульса, и прибор ПОС-2МГ4П, предназначенный для испытания ячеистых бетонов методом вырыва спирального анкера. Приборы типа ПОС состоят из силовозбудителя и электронного блока и комплектуются анкерами типа II 024×30 мм, 024×48 мм и 016×35 мм с предельным усилием вырыва 30 кН (ПОС-ЗО) и 50 кН (ПОС-50), что позволяет производить испытание бетона прочностью до 100 МПа. Погрешность определения усилия – не более ± 2%. Прибор ПОС-50МГ4-Р может оснащаться малогабаритным червячным редуктором, обеспечивающим равномерное нагружение анкера и малое усилие на рукояти. Комплектуется устройством для испытаний методом скалывания ребра конструкций с гранью до 450 мм (модификация ПОС-50МГ4«Скол»). Прибор ПОС-50МГ4-2 имеет две опоры, минимальные массогабаритные характеристики и может применяться для испытания бетона изделий цилиндрической формы, когда применение трехопорных приборов ограничено. Прибор ПОС-50МГ4-3 трехопорный с подъемным силовозбудителем имеет малые габариты и массу.

Читайте также:  Какой клей для плитки лучше?

Испытания методом отрыва со скалыванием должны производиться в соответствии с рекомендациями (ГОСТ 22690 Бетоны. Определение прочности бетона методами нераэрушающего контроля., Рекомендации. Определение прочности бетона в конструкциях и изделиях методом вырыва анкера (МИ2016-03) НИИЖБ-ГП ВНИИФТРИ 2003). Испытания бетона методом отрыва стальных дисков могут производиться любым из приборов ПОС-30(50)МГ4, либо адгезиметром типа ПСО-10МГ4 с предельным усилием отрыва 10 кН (производятся СКВ Стройприбор). Метрологические характеристики приборов типа ПОС и ПСО обеспечиваются образцовыми динамометрами типа ДОРМ на 10, 30 и 50 кН.

Определение глубины залегания арматуры и ее расположение в бетоне при подготовке к испытаниям методом отрыва со скалыванием должно производиться измерителями защитного слоя бетона, например ИПА-МГ4, имеющим диапазон определения защитного слоя 3. 80 мм в стержнях диаметром 3. 40 мм, с погрешностью до ± 7%.

Для контроля прочности ячеистых бетонов в диапазоне 0.5. 8 МПа разработан прибор ПОС-2МГ4-П, основанный на методе вырыва спирального анкера. Прибор обеспечивает испытания бетона с предельным усилием вырыва 2 кН (погрешность до ± 3%). Установка анкера осуществляется специальным устройством, обеспечивающим постоянный шаг ввинчивания в тело бетона. Все приборы имеют автономное питание, связь с ПК и энергонезависимую память.

В отличие от методов местных разрушений приборы, основанные на ударно-импульсном воздействии на бетон, имеют значительно большую производительность, однако контроль прочности бетона ведется в поверхностном слое толщиной 25. 30 мм, что ограничивает их применение. В упомянутых выше случаях необходима зачистка поверхности контролируемых участков бетона или удаление поврежденного поверхностного слоя.

Применение ударно-импульсных приборов для неразрушающего контроля прочности и однородности бетона в возрасте до 100 сут не вызывает особых сложностей, если контролируемые поверхности образованы металлической опалубкой. Неразрушающий контроль прочности бетона на заводах ЖБИ и в строительных лабораториях, как правило, осуществляется после приведения градуировочных зависимостей приборов в соответствие с фактической прочностью бетона по результатам испытания контрольных партий кубов в прессе. Подобные испытания прибора ИПС-МГ4.03 проводились в НТЦ «Качество» (г.Николаев, Украина) на кубах из тяжелого бетона класса В25 (шесть серий по три куба). По результатам испытаний был установлен коэффициент совпадения Кс=0,84 используемой градуировочной зависимости (тяжелый бетон на граните, возраст 28 сут, ТВО). Фактическая прочность бетона в сериях составила 32,8. 38,9 МПа и соответствовала заявленному классу бетона при коэффициенте вариации 13,5%. Полученный коэффициент Кс был введен в программное устройство прибора нажатием соответствующих кнопок клавиатуры, и испытания были продолжены на двух контрольных сериях образцов с целью проверки уточненной градуировочной зависимости. Прибор воспроизвел прочность бетона с погрешностью 1,2 и 3,1% соответственно. Осмотр разрушенных кубов всех серий показал наличие в растворной части бетона многочисленных глинистых включений размером до 10. 12 мм.

Описанный случай является достаточно редким (при правильно выбранной градуировочной зависимости Кс в основном варьируется в пределах 0,88. 1.12) и объясняется применением при изготовлении бетона некачественного песка с большим содержанием глинистых включений.

Применение же ударно-импульсных и ультразвуковых приборов на объектах строительства и при обследовании эксплуатируемых конструкций, когда нет возможности уточнить градуировочную зависимость испытанием кубов в прессе, сопряжено с существенными ошибками при определении прочности бетона. Приборы отрыва со скалыванием в таких случаях являются предпочтительными.

Опыт ведущих специалистов по неразрушающему контролю прочности бетона показывает, что в их базовый комплект должны входить приборы, основанные на разных методах контроля: отрыв со скалыванием (скалывание ребра), ударный импульс (упругий отскок, пластическая деформация), ультразвук, а также измерители защитного слоя и влажности бетона, оборудование для отбора образцов из конструкции.

Разработанные ОКБ Стройприбор новые измерители прочности бетона ИПС-МГ4.01 и ИПС-МГ4.03 являются дальнейшим развитием базовой модели ИПС-МГ4, выпускавшейся с 1994 г. Приборы предназначены для оперативного контроля прочности бетона в диапазоне 3. 100 МПа при изготовлении сборных железобетонных конструкций и при обследовании конструкций зданий и сооружений. В отличие от предыдущих модификаций и известных аналогов приборы оснащены дополнительными функциями:

  • ввода коэффициента совпадения Кс для оперативного уточнения базовых градуировочных характеристик;
  • маркировки измерений типом контролируемого изделия (балка, плита, ферма и т.д.);
  • вычисления класса бетона В с возможностью выбора коэффициента вариации прочности;
  • исключения ошибочного промежуточного значения.

Перечисленные функции, а также выбор направления удара активируются пользователем с клавиатуры приборов в диалоговом режиме. Прибор ИПС-МГ4.03 имеет 44 базовые градуировочные зависимости, учитывающие вид контролируемого бетона (крупного заполнителя), возраст и условия твердения бетона.

Перечисленные возможности приборов позволяют проводить неразрушающий контроль прочности бетона с погрешностью 5. 8%. Чем больше исходных данных, характеризующих бетон, известно пользователю и соответственно введено перед началом испытаний, тем ниже погрешность измерений. Измерение прочности бетона заключается в нанесении на контролируемом участке изделия серии до 15 ударов, после чего электронный блок по параметрам ударного импульса, поступающего от склерометра, оценивает твердость и упругопластические свойства испытываемого материала, преобразует параметр импульса в прочность и вычисляет соответствующий класс бетона. Полученные результаты измерений и исходные данные, вводимые пользователем, автоматически архивируются, маркируются датой и временем измерения.

Объем архивируемой информации – 1000 результатов измерений и 15000 промежуточных значений прочности. Предусмотрена возможность ввода в программное устройство приборов характеристик индивидуальных градуировочных зависимостей, установленных пользователем (в приборах ИПС-МГ4.03 и ИПС-МГ4.01 -20 и 9 соответственно). Ввод характеристик индивидуальных зависимостей производится с клавиатуры прибора и заключается в корректировке базовой зависимости по результатам параллельных испытаний бетонных образцов в прессе (либо методом отрыва со скалыванием) и прибором.

Корректировка базовой зависимости может производиться при числе точек корректировки от 1 до 9. Приборы имеют режим передачи данных на ПК, обеспечивающий математическую и статистическую обработку результатов измерении, экспорт в Excel, печать в табличном виде с указанием вводимых пользователем исходных данных, даты и времени измерений. Метрологические характеристики приборов обеспечиваются эквивалентными мерами, аттестованными Госстандартом РФ, воспроизводящими прочность бетона в трех точках диапазона.

Прочность и долговечность железобетонных конструкций во многом зависят от обеспечения проектных значений защитного слоя бетона и диаметра арматуры. Определение параметров армирования производится на предприятиях сборного железобетона, на объектах строительства и при обследовании зданий и сооружений. Контроль в основном ведется приборами магнитного действия (ГОСТ 22904 Конструкции железобетонные. Магнитный метод определения толщины защитного слоя бетона и расположения арматуры). Приборы применяются также для определения мест приложения нагрузки при контроле прочности бетона методами отрыва со скалыванием и скалывания ребра конструкции.

СКВ Стройприбор производит два типа измерителей защитного слоя бетона: ИПА-МГ4 и ИПА-МГ5. Приборы обеспечивают определение защитного слоя бетона в конструкциях, армированных стержнями диаметром 6. 40 мм классов А-I и А-III и проволокой диаметром 3. ..6 мм класса Вр-I в диапазоне защитных слоев З. 80мм (ИПА-МГ4) и 3. 150 мм (ИПА-МГ5). Прибор ИПА-МГ5 позволяет выполнять измерения при неизвестном диаметре и защитном слое в диапазоне 5. 50 мм, оснащен функциями уточнения базовых градуировочных характеристик при измерениях на арматуре других классов, установления и записи в программное устройство новых градуировочных зависимостей, установленных пользователем, маркировки измерений типом изделия из ряда (балка, колонна и т.п.), имеет режим передачи данных на ПК. Объем памяти прибора 1000 значений.

Точность натяжения арматуры является одним из основных факторов, определяющих жесткость и трещиностойкость предварительно напряженных конструкций и в конечном счете их долговечность и эксплуатационную пригодность. Обеспечение проектного усилия обжатия бетона достигается контролем силы натяжения арматуры преимущественно приборами, основанными на частотном методе и методе поперечной оттяжки (ГОСТ 22362 Конструкции железобетонные. Методы измерения силы натяжения арматуры). Широкое применение на предприятиях сборного железобетона получили приборы ЭИН-МГ4 (частотный метод) и Д0-40МГ4 (Д0-60МГ4) (метод поперечной оттяжки на собственной базе).

Прибор ЭИН-МГ4 обеспечивает измерение напряжений в арматуре диаметром 3. 32 мм. длиной 3. 18 м. в диапазоне напряжений 100. 1800 МПа с пределом погрешности ± 3 %. Прибор имеет функции автоматического расчета заданного удлинения арматуры, длины арматурной заготовки и корректировки расстояния между анкерными головками. Гарантируется высокая достоверность результатов измерений. Прибор Д0-40МГ4 имеет собственную базу 300 мм и предназначен для контроля силы натяжения проволочной арматуры диаметром 3. 6 мм в диапазоне усилий 2. 45 кН на линиях по производству шпал, стоек ЛЭП, изделий непрерывного бетонирования.

Прибор Д0-60МГ4 имеет собственную базу 600 мм и предназначен для контроля проволочной и канатной арматуры диаметром 6. 12 мм в диапазоне усилий 3. 100кН. Погрешность приборов типа ДО – не более ± 3 %. Приборы имеют энергонезависимую память, автономное питание и интерфейс с ПК.

Основные объемы неразрушающего контроля прочности бетона выполняются, как правило, высокопроизводительными приборами после установления корреляции их косвенной характеристики (базовой зависимости) с фактической прочностью контролируемого бетона.

Неразрушающие испытания бетона

Испытание готовых бетонных конструкций на сжатие, является одним из факторов оценки состояния зданий и сооружений. С помощью тех или иных технологий проверяется фактическая прочность нового или старого бетонного сооружения.

  • Технологии неразрушающего контроля прочности бетона
  • Испытание бетона методом неразрушающего контроля ГОСТ 17624-2012
  • Виды испытаний. Таблица значений.
  • Заключение

По результатам испытаний принимается решение о возможности дальнейшей эксплуатации конструкции, возможности ее ввода в эксплуатацию, необходимости усиления и т.п. Неразрушающие испытания бетона – самый популярный и перспективный вид проверки прочности, характеризующийся высокой производительностью, приемлемой точностью, низкой трудоемкостью, невысокой себестоимостью и простотой.

По результатам испытаний принимается решение о возможности дальнейшей эксплуатации конструкции, возможности ее ввода в эксплуатацию, необходимости усиления и т.п. Неразрушающие испытания бетона – самый популярный и перспективный вид проверки прочности, характеризующийся высокой производительностью, приемлемой точностью, низкой трудоемкостью, невысокой себестоимостью и простотой.

Добавить комментарий