Конденсационные газовые котлы – КПД и особенности работы

Одноконтурные и двухконтурные конденсационные котлы

Конденсационный одноконтурный газовый котел служит только для отопления, тогда как устройство с двумя нагревательными контурами обеспечивает еще и приготовление горячей воды для бытовых целей.

На первый взгляд преимущество двухконтурных моделей очевидно, но в реальности все не так однозначно. Разберемся в плюсах и минусах каждого варианта.

  • Двухконтурный котел имеет второй теплообменник, предназначенный специально для обеспечения горячего водоснабжения. Кроме того, он оснащен клапаном, который регулирует направление подачи теплоносителя. В зависимости от положения этого клапана горячая вода поступает либо в трубы отопления, либо в систему ГВС.
    Казалось бы, все очень просто и удобно. Но здесь есть важный нюанс. Большинство моделей двухконтурных котлов настроены на приоритет ГВС. Другими словами, при открытии крана горячей воды теплоноситель автоматически прекращает поступать в систему отопления. Либо вы обогреваете дом, либо принимаете душ, моете посуду и т.п.
    Кроме того, двухконтурные котлы имеют низкую производительность по ГВС. Ее может оказаться недостаточно, если предполагается использовать несколько точек водоразбора одновременно. По мере расхода вода будет охлаждаться, что нельзя назвать удобным.
  • Что касается одноконтурных котлов конденсационного типа, то они также могут производить воду для ГВС при наличии бойлера косвенного нагрева. Возможность его подключения предусмотрена в большинстве современных агрегатов. Бойлер косвенного нагрева — это накопительный резервуар, объем которого подбирается с учетом потребностей в ГВС. Благодаря встроенной автоматике он поддерживает постоянную температуру воды на заданном уровне. Это значит, что пользоваться горячей водой можно без ограничений. При этом система отопления также будет функционировать.

Но все же какой конденсационный газовый котел лучше — одноконтурный или двухконтурный? Ответ на этот вопрос зависит от индивидуальных требований к системам отопления и горячего водоснабжения. Если потребность в ГВС небольшая, удобным, компактным и экономичным решением станет двухконтурный агрегат. Если же имеется необходимость в регулярном приготовлении значительных объемов горячей воды, целесообразно установить одноконтурник с отдельным бойлером.

Итак, основные плюсы конденсационных котлов:

Как работает конденсационный котел

Топливом для конденсационного котла, как и для обычного, является сжиженный или природный газ. Последний чаще применяют в быту, в то время как сжиженный больше ориентирован на промышленность. Название появилось благодаря способности «забирать» у продуктов сгорания «скрытую» теплоту — кинетическую энергию воды, образовавшейся в процессе конденсации водяного пара.

Иными словами, в основе технологии лежат физические законы. При сгорании голубого топлива выделяются углекислый газ и вода. Жидкость испаряется, что сопровождается выделением тепловой энергии. Конденсация пара позволяет «вернуть» потерянную теплоту (энергию), повысив тем самым КПД системы. При этом в обычных котлах конденсат — это явление нежелательное, с которым борются. В конденсационном же оборудовании для образования жидкости предусмотрен специальный теплообменник. Последний «забирает» тепло, выделяемое при конденсации, и передает его теплоносителю (технической воде).

Для того чтобы предотвратить коррозию, в производстве котлов используют материалы повышенной стойкости: нержавеющую сталь или силумин (сплав алюминия и кремния).

В общем случае конструкция конденсационного котла схожа с обычным газовым. Ее основные элементы:

  • Патрубки подачи и отвода воды. Здесь холодная вода подается в оборудование, а после нагрева отправляется в радиаторы и трубы ГВС.
  • Горелка. Подает газ в камеру сгорания и распределяет топливо равномерно.
  • Теплообменник № 1. Емкость для нагрева воды.
  • Теплообменник № 2. Емкость для конденсации и извлечения дополнительной тепловой энергии.
  • Насос. Обеспечивает циркуляцию воды.

При поступлении воды в камеру сгорания подается газ. Далее горелка запускает процесс горения. Продукты горения проходят через теплообменник № 1 и нагревают его стенки. Последние, в свою очередь, передают тепло циркулирующей технической воде (теплоносителю). Затем газы с температурой выше точки росы (55 °С) переходят в теплообменник № 2. Там пар охлаждается и образуется конденсат. В результате освобождается энергия, которая также идет на обогрев.

Таким образом, одна часть котла работает по стандартному принципу, то есть нагревает теплоноситель за счет сгорания топлива, вторая — аккумулирует энергию конденсируемых паров воздуха. Процесс этот непростой. Для того чтобы повысить эффективность конденсации, применяют некоторые технологические решения:

  • трубки теплообменника приваривают в форме спирали, чтобы увеличить площадь соприкосновения с теплоносителем;
  • охлажденный (обратный теплоноситель) отправляют сначала в ту часть теплообменника, куда поступают охлажденные дымовые газы;
  • устанавливают высокотехнологичные горелки, которые позволяют максимально смешать воздух и магистральный газ. Это делает работу аппарата еще более эффективной.

Конденсационные котлы используют для отопления квартир, небольших коттеджей или частных домов. От площади помещений зависит выбор размера, а также мощности котла. В индивидуальных домах, помимо обеспечения отопления, котел обычно работает еще и на обогрев воды для бытового использования.

20

Миф №3

Проблемы с конденсатом.

Бытует мнение, что много проблем вызывает конденсат, образующийся в процессе работы котла. Конденсат действительно выделяется, и для его утилизации производители предлагают системы нейтрализации и отвода. Количество выделяемого конденсата зависит в первую очередь от мощности котла. Для того чтобы приблизительно оценить количество конденсата, можно использовать следующую простую схему. Для сжигания 1 м3 газа необходимо 9 м3 воздуха, в результате чего выделяется 2 м3 паров воды, из которых может осесть в виде конденсата 1,6 л. Исходя из этих цифр, можно элементарно вычислить максимальное количе-ство конденсата, которое образуется при работе конденсационного котла. Всех пугает сам факт, что при работе котла выделяется конденсат, но мало кто помнит, что при работе обычного котла также выделяется конденсат и требует утилизации. Дымовая труба после остановки котла остывает сверху вниз, и конденсат, образуясь на стенках дымохода, начинает стекать к котлу. Об этом факте зачатую забывают, ограничиваясь установкой конденсатоотводчика, который сбрасывает образовавшуюся жидкость без предварительной нейтрализации в канализацию, что недопустимо.

Читайте также:  Мойка фасадов зданий: оборудование и способы

На самом деле конструкция дымоходов для конденсационных котлов почти не отличается от конструкции дымохода для обычных газовых котлов с закрытой камерой сгорания. Благодаря конструкции конденсационного котла, продукты сгорания удаляются принудительно, что дает возможность подключать котел к таким системам дымоудаления, как коаксиальный дымоход, двухтрубная система, а также к системе забора воздуха из помещения и удаления продуктов сгорания через дымовую трубу. Преимуществом таких котлов является большое количество вариантов подключения к дымоходу без его постройки. Это как раз то, чего так не хватает напольным котлам. Единственное требование к дымоходам для конденсационных котлов – их герметичность.

Минусы конденсационных котлов

  • Конденсационники ощутимо дороже обычного газового котла;
  • В сильные морозы конденсационные котел несколько снижает свою эффективность, так как в системе отопления нужно повышать температуру теплоносителя, что не лучшим образом отражается на возможности конденсирования. В очень сильные морозы конденсационный котел зачастую переходит в режим работы, который схож с режимом работы обычного котла, и при этом КПД конденсационника снижается до 85%.

У конденсационного газового котла гораздо меньше вредных выбросов, почти в 10 раз меньше чем у обычного газового котла.

Достоинства

  • Максимально высокий КПД. Это и есть самый главный и самый важный плюс конденсационных котлов – КПД, превышающий 100%. Высокотемпературная часть теплообменника обеспечивает 98-100% тепла. И еще 8-11% тепла образуется в низкотемпературной части в процессе конденсации паров.
  • Экономичность. Если вы ищете самый экономичный с точки зрения потребления топлива вариант, рекомендуем купить конденсационный котел. Конденсационные котлы на 20-35% экономичнее классических газовых котлов.
  • Экологичность. Современные конденсационные газовые котлы на 70% экологичнее обычных. Это одна из причин, по которой во многих странах постепенно стараются отказываться от традиционных котлов и переходить на конденсационное оборудование. В отработанных газах, которые выбрасывают в атмосферу обычные котлы, содержатся кислоты (серная, угольная, азотная). В конденсационных котлах кислоты растворяются в конденсационной жидкости и потом нейтрализуются.
  • Вес и габариты. При высокой мощности и превосходных показателях КПД конденсационные котлы отличаются небольшими габаритными размерами и достаточно легким весом.
  • Низкий уровень шума. Конденсационный котел отлично подходит для обслуживания жилых пространств, поскольку работает не только экологично, но и практически бесшумно.
  • Низкая температура выходящих газов. За счет низкой температуры отходящих газов при установке конденсационных котлов разрешается использовать дымоходы из пластика.

Дело в том, что при определении КПД конденсационных котлов берутся в расчет два параметра – нижняя теплотворная способность газа (без учета энергии пара) и верхняя. До появления конденсационных моделей при расчете КПД учитывалась только нижняя теплотворная способность. У конденсационных котлов к этому показателю стали добавлять проценты, полученные от дополнительной энергии за счет конденсации. Например, стандартный КПД котла составляет 98%, а от тепла конденсации добавляется еще 11%. Так в характеристиках получается общее финальное значение КПД – 109%.

Сравнение с обычными котлами

Первое, что выделяет конденсационные отопительные котлы и шокирует покупателей — это диковинно большой КПД, больше 100%. При этом теоретическая физика настаивает на том, что такого не бывает. И это действительно так. В данном случае производители просто используют своеобразную систему расчетов.

Для того чтобы понять, что такое конденсационный котел и за счет чего он получает дополнительную тепловую энергию, необходимо рассмотреть Qн низшую и Qв высшую теплотворную способность топлива.

У натурального топлива существует 2 точки сгорания: высшая и низшая, между которыми существует большая разница.

Qв = Qн +k*(W+9H);

  • K – коэффициент, равный 25 кДж/кг (6 ккал/кг);
  • W – количество воды в горючем веществе, %;
  • H – количество водорода в горючем веществе, % (по массе).

Собственно использование тепла от конденсации влаги, в обычных котлах выбрасывается в атмосферу, повышает КПД в конденсационных котлах.

При сгорании равного объема газа, конденсационные котлоагрегаты выделяют на 15-20% больше тепловой энергии, чем классический аналог. Данный результат образуется в связи с установкой дополнительного теплового элемента котла, особого теплообменного аппарата — водяного экономайзера, отбирающего тепло от уходящих дымовых газов ниже точки конденсации +55 C.

Для того чтобы привести в соответствие эти расчеты многие страны ЕС сейчас перешли на модернизированный способ определения КПД, в котором учитывается все выделяемое тепло сгорания топлива.

Читайте также:  Камнеломка: посадка и уход

И по таким, обновленным расчетам, реальный КПД конденсационного котла достигает 95%, например, как у немецких моделей конденсационного типа Wolf, а КПД обыкновенных конвекционных аналогов котлов не превышает 85%.

Таким образом, действительно у конденсационных котлов имеется существенное преимущество по эффективности, по сравнению с традиционными отопительными котлами.


Первое, что выделяет конденсационные отопительные котлы и шокирует покупателей — это диковинно большой КПД, больше 100%. При этом теоретическая физика настаивает на том, что такого не бывает. И это действительно так. В данном случае производители просто используют своеобразную систему расчетов.

Конденсационный газовый котел – принцип работы

Основным принципом работы любого оборудования конденсационного типа является способность пара в процессе охлаждения переходить в жидкое состояние.

Сам процесс перехода сопровождается высвобождением некоторого количества тепловой энергии, что позволяет значительно снизить расход топлива и повышает коэффициент полезного действия.

Принцип действия конденсационного оборудования представлен несколькими поочередными этапами:

  • прохождение продуктов сгорания через первый теплообменник, с охлаждением до температурных показателей выше точки росы и передачей тепловому носителю порядка 90% всей энергии;
  • подача продуктов сгорания внутрь конденсируемого теплообменника с последующим их охлаждением до температурных показателей в 50оС;
  • осуществление конденсации пара и передачи скрытой энергии на уровне 10% тепловому носителю;
  • поступление конденсата внутрь специального резервуара, и последующее его выведение посредством специальных труб нейтрализующих резервуаров.

Следует отметить, что для изготовления конденсируемого теплообменника обязательно должны применяться современные и высококачественные материалы, обладающие отличными противокоррозионными характеристиками.

Принцип работы конденсационных котлов

Чаще всего с этой целью используются алюминиево-кремниевые сплавы, а также надежная нержавеющая сталь, отличающиеся долговечностью и не подвергающиеся разрушению под действием агрессивных конденсатов.

В современном отопительном оборудовании, представленном газовыми котлами, показатели распределения включают в себя полезную энергию, лучистое тепло и потери, удаляемые с продуктами сгорания непосредственно в атмосферу, но КПД конденсационного котла выше традиционных приборов примерно на 15%.

Конденсационные процессы протекают внутри специальной камеры – теплообменника, который обладает значительной площадью, а вся отобранная тепловая энергия полностью возвращается непосредственно в отопительную систему.

В современном отопительном оборудовании, представленном газовыми котлами, показатели распределения включают в себя полезную энергию, лучистое тепло и потери, удаляемые с продуктами сгорания непосредственно в атмосферу, но КПД конденсационного котла выше традиционных приборов примерно на 15%.

Образование конденсата

Пример отвода и нейтрализации конденсата.
Следующий важный нюанс, который многие пользователи отмечают как недостаток – котлу необходима ежедневная утилизация отработанного конденсата.

Количество конденсата можно определить из расчета 0,14 кг на 1 кВт/ч. Так, например, агрегат мощностью 24 кВт, который в среднем работает с нагрузкой 40–50 % (благодаря точной регулировке параметров, исходя из погодных условий, может задействоваться и меньшая часть ресурса), выделяет около 32–40 л в сутки.

Что дальше делать с этой жидкостью зависит от вида очистной системы:

  • центральная (поселковая, городская) канализация – конденсат можно просто сливать, при условии, что его разбавили в пропорции минимум 10:1, а лучше 25:1;
  • локальная очистительная станция (ЛОС) и септик – конденсат предварительно должен проходить через процедуру нейтрализации кислоты в особом резервуаре.

Наполнителем для нейтрализатора, как правило, служит мелкая минеральная крошка совокупным весом от 5 до 40 кг. Менять её придётся вручную каждые 1–2 месяца. Также есть модели со встроенными нейтрализаторами, попадая в которые, конденсат автоматически ощелачивается и самотёком отводится в канализацию.

Пример применения компактного нейтрализатора при производстве небольшого к-ва конденсата.


Одним из основных недостатков любых современных конденсационных котлов, по мнению большинства отечественных потребителей, по-прежнему остаётся достаточно высокая стоимость такого отопительного оборудования.

Не может быть?!

Принцип работы конденсационного котла

Все знают, что КПД любого устройства не может быть больше 100%. В техпаспорте же конденсационных котлов указана цифра 108–110%. Резонный вопрос – как это возможно? Дело в том, что КПД подобных приборов, так сказать, в чистом виде составляет порядка 98%, а добавочные 10% получаются в результате отъема тепла у отходящих газов, образующихся при сгорании топлива. И если у конвекционных котлов это тепло в буквальном смысле просто улетает в трубу и согревает уличный воздух, то конденсатники заставляют его работать на повышение своего КПД. Суть процесса в следующем: при охлаждении дымовых газов до температуры точки росы (≈ 55°С) содержащиеся в них водяные пары конденсируются, что сопровождается высвобождением значительного количества тепла. Теплотехнические расчеты показывают, что благодаря этому экономия энергии может составить при сжигании природного газа 11%, сжиженного газа (пропан-бутан) – 9%, солярки – 6 % .

Для охлаждения дымовых газов агрегаты используют обратку, то есть теплоноситель, уже прошедший по трубам и имеющий температуру ниже 55°С, необходимую для конденсации пара. Таким образом, конденсационные котлы будут работать со всей возможной отдачей только в низкотемпературных системах отопления (теплые полы, климатические стеновые панели, капиллярные маты). В системах, функционирующих в режиме 90/70°С, они превзойдут по экономичности конвекционные теплогенераторы всего на 3–5%.

Конденсационные газовые котлы позволяют сэкономить за отопительный сезон до 20–25% топлива. Кроме того, при его сгорании на 90% сокращаются выбросы в атмосферу оксидов азота и углерода

Читайте также:  Как поменять ролики на душевой кабине

Конденсационным котлам обычно «вменяют в вину» то, что они не годятся для работы в высокотемпературных системах радиаторного отопления. Но так ли это? Ведь при обогреве дома радиаторами, даже в условиях наших зим, делать их горячее 55°С большую часть отопительного периода просто нет необходимости. За исключением максимум двух-трех морозных недель, среднесуточная температура за окном составляет около 0°С, и «раскалять» в это время батареи, расходуя лишнее топливо, совсем ни к чему. Таким образом, когда потребности дома в тепле могут быть полностью удовлетворены при пониженной температуре теплоносителя, конденсационный котел будет прекрасно обслуживать и радиаторные системы отопления. Ну а если ударит настоящий мороз (–25…30°C) и котельная перейдет на усиленный режим работы (к примеру, 90°С), то процесс конденсации прекратится и эффективность котла снизится, но все равно, хоть и незначительно, она будет выше, чем у конвекционных устройств.

Ультразвук

Джиллы — единицы объема, используемые в США для измерения алкогольных напитков. Один джилл — это пять жидких унций в Британской имперской системе или четыре в американской. Один американский джилл равен четверти пинты или половине чашки. В Ирландских пабах подают горячительные напитки порциями в четверть джилла, или 35,5 миллилитра. В Шотландских порции меньше — одна пятая джилла, или 28,4 миллилитра. В Англии до недавнего времени порции были еще меньше, всего одна шестая джилла или 23,7 миллилитра. Теперь же, это 25 или 35 миллилитров в зависимости от правил заведения. Хозяева могут решать самостоятельно, какую из двух порций им подавать.

Объем

Доступ наши самые популярные конвертеры ниже быстро преобразовывают курсы валют, расстояние, температура, площадь и многое другое. Это доступ все наши конвертеры, перейдите в меню выше.

Как рассчитать объем коробки?

У вас возник вопрос о доставке, а так же возникла необходимость знать, как вычислить объем груза, нужна наша помощь? Как вычислить объем груза мы знаем, на этой странице вы видите калькулятор, который точно выполнит расчеты.

А вообще, для какой цели рассчитывается объем?

Объем рассчитать необходимо для того, чтобы избежать недоразумений при погрузке груженых коробок в транспортное средство. Объем рассчитать при помощи современных технологий сегодня несложно, достаточно вашего нахождения тут.

Можно объем посчитать коробки или ёмкости в основании которых лежит круг, и для этого так же существует формула. Объем посчитать коробки формой круга позволяет выражение V *r2*h, размеры прежде всего надо безошибочно измерить.

Приведение к нормальным и стандартным условиям

Единицей измерения объема газа является кубический метр (м³). Измеренный объем приводится к нормальным физическим условиям.

Нормальные физические условия: давление 101 325 Па, температура 273,16 К (0 °С).

Стандартные условия: давление 101 325 Па, температура 293,16 К (+20 °С).

В настоящее время эти обозначения выходят из употребления. Поэтому в дальнейшем следует указывать те условия, к которым относятся объемы и другие параметры газа. Если эти условия не указываются, то это значит, что параметры газа даны при 0 °С (273,16 °К) и 760 мм рт. ст. (1,033 кгс/см²). Иногда объем газа (особенно в иностранной литературе и нормах) при пользовании системой СИ приводится к 288,16 °К (+15 °С) и давлению 1 бар (105 Па).

Если известен объем газа при одних условиях, то пересчитать его в объемы при других условиях можно с помощью коэффициентов, приведенных следующей таблице.

Единица плотности в СИ — килограмм на кубический метр (кг/м³).

Конвертер мер объёма жидкости

Масса — мера инертных свойств тела. Если произвольная сила в инерциальной системе отсчёта одинаково ускоряет разные тела, этим телам приписывают одинаковую инертную массу.

Перевод физических величин из одних единиц измерения в другие

Основные и производные (механические и тепловые) единицы СИ: Длина, масса, время, термодинамическая температура, количество вещества, сила электрического тока, сила света, площадь, объем, вместимость, скорость линейная, ускорение линейное, частота вращения, плотность, сила, вес, момент силы, момент пары сил, давление, механическое напряжение, модуль упругости, поверхностное напряжение, динамическая вязкость, кинематическая вязкость, работа, энергия, мощность, поток энергии, количество теплоты, термодинамический потенциал (внутренняя энергия), теплоемкость системы, удельная теплоемкость, удельная энтропия, теплопроводность.

Ниже представлены таблицы перевода величин в другие единицы измерения для основных и производных единиц, для британской системы единиц измерения, даны таблицы соотношения мер вместимости, перевода единиц давления, скорости, объемного расхода и теплопроводности.

Основные и производные (механические и тепловые) единицы СИ: Длина, масса, время, термодинамическая температура, количество вещества, сила электрического тока, сила света, площадь, объем, вместимость, скорость линейная, ускорение линейное, частота вращения, плотность, сила, вес, момент силы, момент пары сил, давление, механическое напряжение, модуль упругости, поверхностное напряжение, динамическая вязкость, кинематическая вязкость, работа, энергия, мощность, поток энергии, количество теплоты, термодинамический потенциал (внутренняя энергия), теплоемкость системы, удельная теплоемкость, удельная энтропия, теплопроводность.

Добавить комментарий